ORIGINAL ARTICLE

Elli Ioachim · Ann Goussia · Niki J. Agnantis

Glycoprotein CD44 expression in colorectal neoplasms

An immuno-histochemical study including correlation with cathepsin D, extracellular matrix components, p53, Rb, bcl-2, c-erbB-2, EGFR and proliferation indices

Received: 28 July 1998 / 8 October 1998

Abstract CD44 has diverse functions in cell-cell and cell-matrix interactions and may be a determinant of metastatic and invasive behaviour in carcinomas. The immunohistochemical expression of CD44 in a series of 110 colorectal carcinomas and 25 adenomas was examined using the monoclonal mouse anti-human phagocytic glycoprotein-1, CD44 (clone DF 1485) in correlation with the expression of basement membrane (BM) antigens (type IV collagen, laminin), fibronectin, cathepsin D, p53, Rb, bcl-2, c-erbB-2, EGFR, proliferation indices (Ki-67, PCNA) and with other conventional clinicopathological variables. In adenomas, low CD44 expression (<10% of neoplastic cells) was present in 16%, moderate (10-50% of neoplastic cells) in 52% and extensive (>50% of neoplastic cells) in 32% of cases. In carcinomas, low CD44 expression was found in 14.5%, moderate in 28.2% and extensive in 57.30%. Although the CD44 expression was higher in carcinomas than in adenomas, we found no statistically significant difference between these two groups. CD44 expression in carcinomas was positively correlated with tumour size (P=0.018), tumour cells cathepsin D (P=0.022), stromal cell cathepsin D (P=0.003) and Rb protein (P=0.021). An inverse correlation was observed between CD44 and the anti-apoptotic protein expression bcl-2 in adenocarcinomas (P=0.039) and in adenomas (P=0.021). These data suggest that CD44 may be involved in the process of invasion and metastasis, probably with the cooperation of cathepsin D. Its expression may be an indicator of poor prognosis in colorectal adenocarcinomas.

Key words CD44 · Cathepsin D · Collagen type IV · Laminin · Fibronectin

E. Ioachim (►) · A. Goussia · N.J. Agnantis Department of Pathology, Medical School, University of Ioannina, 45110 Ioannina, Greece Tel.: +30-651-97520, +30-651 99425,

Fax: +30-651 46209, +30-651 30347

Introduction

CD44 is a transmembrane glycoprotein molecule expressed by many normal tissues and is involved in cell-cell and cell-matrix interactions; it also facilitates lymphocyte recirculation and activation [16, 29]. It is expressed as a standard form (CD44H) and as numerous splice variants (CD44v) [25, 31]. Current evidence suggests that CD44 proteins participate in a large number of related molecular processes, which involve specific adhesions to hyaluronate, collagen, and fibronectin [23], signal transduction [37] and cell migration [34]. CD44 is widely distributed on haematopoietic and nonhaematopoietic cells, including subsets of leucocytes, erythrocytes, many types of epithelium, mesenchymal cells, such as fibroblasts and skeletal muscle cells, glial cells of the central nervous system and a wide variety of tumours [5, 14, 17, 18, 32].

CD44 is normally present in only a few crypt epithelial cells in colorectal mucosa, but expression is markedly increased in carcinomas and their precursor adenomas [12, 38]. CD44 expression has been shown to be associated with metastasis and poor prognosis in colorectal cancer [13, 33, 38]. Some reports link expression in colorectal neoplasms and in some epithelial tissues to cell proliferation, suggesting that CD44 has a role in tumour cell growth [1, 2]. Enhanced expression occurs in a significant fraction of early adenomas before alterations of the K-ras protooncogene or p53 tumour suppressor gene [21] and has recently been associated with the expression of mutant p53 protein in colorectal oncogenesis [27]. However, the ability of neoplastic cells to spread to distant sites is derived from complex interrelated processes including the dissolution of basement membrane (BM) and extracellular matrix by degradative enzymes [10, 24, 28, 35]. In colorectal tumours we have examined the immunohistochemical expression of the adhesion molecule CD44 and correlated it with the proteolytic enzyme cathepsin D (CD), BM antigens (collagen type IV and laminin), fibronectin and other potentially valuable prognostic markers (p53, Rb, bcl-2, c-erbB-2, EGFR, proliferation indices). Conventional clinicopathological features (age, sex, tumour size, tumour grade and Dukes' stage) have also been examined.

Materials and methods

Tissue from surgical specimens resected from 110 patients with primary colorectal carcinoma and from 23 patients with colorectal adenomas was collected and processed by standard techniques to paraffin wax, after fixation in formalin 10% for 24-28 h. In 53 cases one parallel sample was collected shortly after surgical removal and snap-frozen in isopentane liquid nitrogen, using an embedding medium for frozen tissue specimens, O.C.T. Compound (Tissue Tek-Miles). The frozen specimens were stored at -80°C until processing. Consecutive 4-μm sections were stained with haematoxylin and eosin for histological diagnosis. Slides from all the tumours were reviewed and classified according to the World Health Organization (WHO) criteria. In regard to the grade of dysplasia, there were 14 adenomas with low dysplasia and 9 with high dysplasia. Histologically all colorectal carcinomas were adenocarcinomas. The age of patients at the time of surgery ranged from 26 to 86 years. According to WHO criteria, the grade of differentiation was high in 25 cases, moderate in 75 and low in 10 cases. In addition, according to Dukes' stage there were 12 cases of stage A, 55 cases of stage B and 43 cases of stage C disaese. In most cases the adjacent "normal" mucosa was also examined

For immunohistochemical staining, additional 4- μ m-thick sections were cut from paraffin blocks. After blockage of endogenous peroxidase with H_2O_2 in methanol for 30 min, sections were immersed in citrate buffer (pH=6.0) in a microwave-resistant container. The sources and dilutions of the antibodies used are shown in Table 1. Immunoperoxidase detection was employed using the ABC method (Dako) and diaminobenzidine substrate. Counter staining was performed with haematoxylin. Appropriate positive and negative controls were used. For Ki-67 staining cryostat sections 4 μ m thick were air-dried and fixed in absolute acetone. They were stained with monoclonal antibodies against Ki-67 (Dako) using sensitive two-step indirect immunoperoxidase technique.

Immunostaining (nuclear or cytoplasmic) was calculated as the percentage of positive tumour cells in relation to the total number in representative fields. Every stained nucleus was considered positive, irrespective of intensity. Only intense membrane immunostaining was considered to represent the overexpression of c-erbB-2 protein, since it has been shown to yield the best prognostic associations [6]. The positivity of cancer cells to cathepsin D (CCCD) was evaluated separately from that of stromal cells (or macrophage-like positive cells) present within or immediately adjacent to the tumour (SCCD). Each sample was first scanned with a low magnification, and at least 10 fields were assessed with a high-power magnification. The results were evaluated quantitatively and divided into several groups (Tables 4, 5). The amount of immunoreactivity of collagen IV and laminin at the tumour-stroma borders was scored semi-quantitatively. More than 10% immunoreactivity at the tumour-stroma interface was scored as extensive BM deposition and less than 10%, as limited. For fibronectin expression we separated the cases into three groups, in accordance with the peripheral tumour staining patterns: an extensive continuous positive connective tissue staining at the periphery of the tumour as (+), positive and negative areas of connective tissue staining as (-/+) and almost negative staining as (-). All slides were reviewed and scored in a blind test by two pathologists.

The association of continuous variables was confirmed using a nonparametric test for two or several independent samples, or Spearman bivariable correlation. *P*-values under 0.05 were considered statistically significant.

Table 1 Antibodies used

Antibodies	Supplier	Dilution	Incubation time
CD44 (Clone DF 1485) Cathepsin D (O13 A) Type IV Collagen Laminin (4C7) Fibronectin (A245) DO-7 (IgG2b) anti-BCL-2 anti-Rb (AB-5) C-erbB-2 (OM-11–925) EGFR (AB-4) PC-10 Ki-67 MIB1	Dako Dako Dako Dako Dako Ylem Dako Oncogene ICI, Cambridge Oncogene Dako Vlem	1:40 1: 300 1: 100 1: 300 1: 400 1: 400 1: 40 1: 500 1: 500 1: 50 1: 50 1: 50	Overnight ^a 30 min 1 h 30 min 0 wernight ^α Overnight ^α Overnight ^α 1 h 1 h 1 h 30 min Overnight ^α

^a With microwave oven antigen retrieval

Results

In the normal colorectal mucosa the cell surface CD44 immunoreactivity was confined to the basal part of the crypts and was expressed in under 10% of crypt cells. In most adenomas and carcinomas the staining intensity for CD44 was heterogeneous. There were different staining patterns of CD44 localization of the cell surface. In the normal mucosa and some adenomas the CD44 was expressed at the superficial part of the cell, while in most of the carcinomas the staining intensity was localized at the basolateral region of the cell (Fig. 1). CD44 expression was found in some lymphocytes and macrophages used as internal controls. Nerves in the submucosa and muscularis propria also showed strong staining of myelin sheath (Schwann cells). Immunostaining of CD44 was mainly restricted to the superficial part of the adenomas, while in adenocarcinomas there was usually an heterogeneous staining pattern. Immunoreactivity for CD was seen as brown, fine to coarse granular cytoplasmic staining in different patterns of CD localization. In normal mucosa in some adenomas and carcinomas the expression was polarized to the luminal surface in most of the cells, while other cases showed a basal polarization of CD. In adenomas, low CD44 expression (<10% of neoplastic cells) was present in 16%, moderate (10–50% of neoplastic cells) in 52% and extensive (>50% of neoplastic cells) in 32% of the cases. In carcinomas low CD44 expression was found in 14.5%, moderate in 28.2% and extensive in 57.30%. The mean values of the CD44 and the other tumour markers are shown in Table 2. Although the CD44 expression was higher in carcinomas than in adenomas, we did not find any statistically significant difference between these two groups. The CD44 expression with the clinicopathological features and the other potentially prognostic markers are shown in Tables 3–5. CD44 expression was positively correlated with size of tumour (P=0.018), tumour cell cathepsin D (P=0.022), stromal cell cathepsin D (P=0.003) and Rb protein expression (P=0.021) in

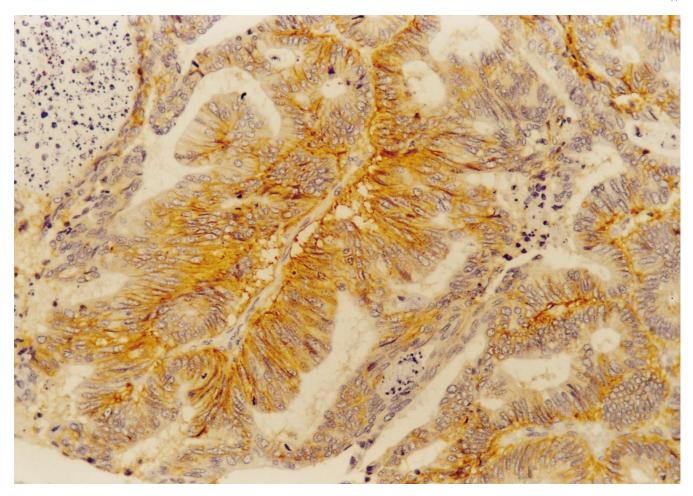


Fig. 1 CD44 positive cells showing cytoplasmic membrane staining localized at the basolateral region in a case of well differentiated colorectal adenocarcinoma. ABC, original magnification $\times 200$

 Table 2
 Simple statistics

	Mean	SD	Min.	Max.	No.
CD44 Ca	51.01	28.45	0.00	100	110
CD44 adenomas	39.40	29.45	0.00	95	25
CCCD	23.44	23.10	0.00	90	93
p53	35.52	35.44	0.00	95	113
Rb	20.69	23.05	0.00	80	112
bcl-2	4.74	13.87	0.00	75	108
PCNA	67.54	2.74	2	98	110
Ki-67	45.53	16	5.3	82	53

adenocarcinomas. An inverse correlation was observed between CD44 and the anti-apoptotic protein bcl-2 in adenomas (P=0.021) and adenocarcinomas (P=0.039).

Discussion

Loss of adhesive functions and gain of new adhesive functions are thought to play a crucial part in the metastatic cascade in epithelial neoplasms [11], and interactions between tumour cells and the extracellular matrix

 Table 3
 CD44 expression with clinicopathological features in colorectal cancer

	CD44 exp	P-value		
	0–10%	10-50%	>50%	_
Age				
<50 >50	4 12	9 20	21 39	NS
Sex				
Female Male	12 4	11 19	30 31	NS
Tumour size				
<5 >5	10 5	15 11	23 37	P=0.018
Grade				
G1 G2 G3	4 9 3	7 22 3	14 44 4	NS
Dukes' stage				
A B C	7 9	4 14 13	8 34 21	NS

>50

< 50

>50

PCNA

3

11

Table 4 CD44 expression with potentially prognostic variables in colorectal cancer.

Table 5 CD44 expression with potentially prognostic variables in adenomas

P value

NS

NS

NS

NS

NS

P=0.021

P=0.014

colorectal cancer.				adenomas					
	CD44 expression		<i>P</i> -value		CD44 expression				
	<10	10-50%	>50%	_		<10	10–50%	>50%	
CCCD					Dysplasia				
<10 >10	8 6	11 11	18 38	P=0.022	Low High	2 2	7 4	5 3	
SCCD					CD				
<10 >10	11 3	15 7	23 33	P=0.003	<10 >10	2 2	1 9	1 5	
Collagen IV					p53				
<10 >10	11 5	17 10	39 23	NS	<5 >5	4	13	5 1	
Fibronectin					Rb				
(-) (-), (+)	2 1 3	2 5 5	3 8 10	NS	<5 >5	1 3	4 9	7	
(+)	3	3	10		bcl-2				
p53 <5 >5	8 8	15 16	24 39	NS	<5 >5	3 1	9 4	5 3	
	o	10	39		EGFR				
Rb <10 >10	7 9	17 13	25 38	P=0.021	<25 >25	4	12 1	7	
		13	36		PCNA				
bcl-2 <5 >5	13 1	26 4	48 12	P=0.039	<50 >50	3	11 1	3 4	
c-erbB-2									
<25 >25	10 1	12 7	27 5	NS	the CD44 expression has differing roles i of the multistep process of carcinogenesis				
EGFR					vasion, perh				
<25 >25	15 1	23 8	51 12	NS High levels of CD44 expression coul by migration or by increased adheren lar matrix. The role of CD44 in the				rence to the	
Ki-67					carcinomas	is clearly of	complex an	d involves	
<50	5	8	12	NS	of gene exp		D44 can bir		

(ECM) also play a crucial part in tumour cell spread and metastatic activity. It has been shown that in colorectal carcinomas CD44 proteins homologous to those associated with metastatic potential in animals are overexpressed during tumour progression [12, 38]. However, the role of CD44 in epithelial metastases is not clear; some studies suggest that a high level of expression of the variant form of CD44 may be important in tumour invasion, and CD44 has been linked to the development and spread of malignancies [1, 17, 18, 38], but there are studies in which down-regulation or absence of CD44 indicates aggressiveness [12, 22]. It is thus possible that

8

5

23

14

56

NS

ifferent parts d tumour inlular matrix. tate invasion e extracellusis of human modulation cellular matrix molecules such as fibronectin, type IV collagen, laminin and hyaluronate [15, 26], but we found no correlation of CD44 expression with the BM antigens (type IV collagen, laminin) and fibronectin. There was a positive correlation with tumour cell CD, and stromal cell CD, and tumour production of CD, a lysosomal aspartyl protease, has been implicated in tumour invasiveness and metastatic dissemination through the breakdown of extracellular matrix [4]. A correlation of CD44 expression with that of the proteolytic enzyme thus suggests a role for this adhesion molecule in the invasion and metastasis in colorectal tumours. In addition, the expression of CD44 in the superficial part of some adenomas, in which the malignant transformation takes place, may indicate a contribution of this molecule to tumour aggressiveness.

CD44 has recently been associated with mutations of the *p53* gene [13, 27], using Pab 1801 and CM1 antibodies. We found no correlation using the DO7 antigen for immunohistochemical detection of p53 protein. These

conflicting results may have been obtained because different antibodies were used.

The link between CD44 expression in colorectal neoplasms and some epithelial tissues has been correlated with cell proliferation [1, 2]. In colorectal mucosa, CD44 is expressed to a much greater extent in the epithelium of the replicative zone at the base of the colorectal crypt than in the nonproliferating epithelium of the upper crypt and luminal surface. In the reports of other studies [7, 13], we did not find any correlation with the growth fraction of the tumour as estimated by PCNA and Ki-67.

The retinoblastoma gene (*Rb*) product is known to act as a negative regulator of the cell cycle, and lack of pRb expression is considered to be responsible for the genesis of several human malignancies. However, increased expression of pRb has been demonstrated in the majority of colorectal cancers [9], and we found a positive correlation between CD44 and pRb expression. It remains to be seen whether the *Rb* gene modulates the CD44 expression or whether these two molecular markers are independent indicators of poor prognosis in colorectal cancer.

The normal biological mechanism of action of bcl-2 is not clear, although the presence of bcl-2 protein is usually associated with favourable clinicopathological features in some neoplasms [8, 19]. The relationship between bcl-2 expression and the evolution from normal colonic epithelium to invasive cancer is not fully understood. However, there is evidence to suggest that bcl-2 expression is lost during the evolution of colorectal cancer [30], and it has been shown that there is an inverse relationship between bcl-2 and p53 expression in cells of both colorectal adenomas and carcinomas [36]. In this study we found an inverse relationship between CD44 and bcl-2 protein expression in both adenomas and carcinomas. In keeping with other studies [3, 20, 30, 36], this fact suggests that bcl-2 expression is characteristic of the early phase of colorectal carcinogenesis, while enhanced expression of CD44 occurs relatively late in the carcinogenetic process.

This study shows that CD44 expression is positively correlated with cathepsin D and pRb, and inversely with bcl-2 protein. These markers might be of clinical value in colorectal cancer and may help to predict the biological behaviour of the tumour.

Acknowledgements We thank Antigoni Christodoulou for technical assistance

References

- Abbasi AM, Chester KA, Talbot IC, Macpherson AS, Boxer G, Forbes A, Malcolm ADB, Begent (1993) CD44 is associated with proliferation in normal and neoplastic human colorectal epithelial cells. Eur J Cancer [A] 29:1995–2002
- Alho AM, Underhill CB (1989) The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol 108:1557–1565
- Baretton GB, Diebold J, Christoforis G, Vogt M, Muller C, Dopfer K, Schneiderbanger K, Schmidt M, Lohrs U (1996)

- Apoptosis and immunohistochemical bcl-2 expression in colorectal adenomas and carcinomas. Aspects of carcinogenesis and prognostic significance. Cancer 77:255–264
- Briozzo P, Morisset M, Capony F, Rougeot C, Rochefort H (1988) In vitro degradation of extracellular matrix with M_r 52,000 cathepsin D secreted by breast cancer cells. Cancer Res 48:3688–3692
- Carter WG, Wayner EA (1988) Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J Biol Chem 263:4193–4201
- De Potter CR, Beghin C, Makar AP, Vandekerckhove D, Roel HJ (1990) The neu- oncogene protein as a predictive factor for haematogenous metastases in breast cancer patients. Int J Cancer 45:55–58
- Futura K, Zahurak M, Yang X-L, Rosada C, Goodman S, August JT, Hamilton SR (1996) Relationship between CD44 expression and cell proliferation in epithelium and stroma of colorectal neoplasms. Am J Pathol 149:1147–1155
- colorectal neoplasms. Am J Pathol 149:1147–1155

 8. Gee JMW, Robertson JFR, Ellis IO, Willsher P, McClelland RA, Hoyle HB, Kyme SR, Finlay P, Blamey RW, Nicholson RI (1994) Immunocytochemical localization of bcl-2 protein in human breast cancers and its relationship to a series of prognostic markers and response to endocrine therapy. Int J Cancer 59:619–628
- Gope R, Gope ML (1992) Abundance and state of phosphorylation of the retinoblastoma susceptibility gene product in human colon cancer. Mol Cell Biochem 110:123–133
- Gorstein F (1988) The dynamic extracellular matrix. Hum Pathol 19:751–753
- 11. Hart IR, Goode NT, Wilson RE (1989) Molecular aspects of the metastatic cascade. Biochim Biophys Acta 989:65–84
- 12. Heider KH, Hofmann M, Hors E van den Berg F, Ponta H, Herlich P, Pals ST (1993) A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J Cell Biol 120:227–233
- Jackson PA, Green MA, Pouli A, Hubbard R, Marks CG, Cook MG (1995) Relation between stage, grade, proliferation, and expression of p53 and CD44 in adenomas and carcinomas of the colorectum. J Clin Pathol 48:1098–1101
- Jalkanen S, Bargatze RF, Herron LR, Butcher EC (1986) A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur J Immunol 16:1195–1202
- Jalkanen S, Jalkanen M (1992) Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol 116: 817–25
- 16. Jalkanen S, Bargatze RF, De Los Toyos J, Butcher EC (1982) Lymphocyte recognition of high endothelium: antibodies to distinct epitope of an 85–95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol 105:983–990
- Joensuu H, Klemi PJ, Toikkanen S, Jalkanen S (1993) Glycoprotein CD44 expression and its association with survival in breast cancer. Am J Pathol 143:867–874
- Joensuu H, Ristamaki R, Klemi PJ, Jalkanen S (1993) Lymphocyte homing receptor (CD44) expression is associated with poor prognosis in gastrointestinal lymphoma. Br J Cancer 68:428–432
- Joensuu H, Pylkkanen L, Toikkanen S (1994) Bcl-2 protein expression and long-term survival in breast cancer. Am J Pathol 145:1191–1198
- Kawahara K, Yoshino T, Kawasaki N, Miyake K, Akagi T (1996) Abnormal expression of the human CD44 gene in early colorectal malignancy with special reference to variant exon 9(9v). J Clin Pathol 49:478–481
- Kim H, Yang XL, Rosada C, Hamilton SR, August JT (1994) CD44 expression in colorectal adenomas is an early event occurring prior to k-ras and p53 gene mutation. Arch Biochem Biophys 310:504–507
- 22. Kuppner MC, Van Meir E, Gauthier T, Hamou M-F, de Tribolet N (1992) Differential expression of the CD44 molecule in human brain tumors. Int J Cancer 50:572–577

- 23. Lesley J, Hyman R, Kincade PW (1993) CD44 and its interaction with the cellular matrix. Adv Immun 54:271–335
- Liotta LA, Rao CN, Barsky SH (1983) Tumour invasion and the extracellular matrix. Lab Invest 49:636–650
- Matsumura Y, Tarin D (1992) Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet 340:1053–1058
- Miyake K, Underhill CB, Lesley J, Kincade P (1990) Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 172:69–76
- Mulder JW, Weilenga VJ, Polak MM, van der Berg FM, Adolf GR, Herrlich P, Pals ST, Offerhaus GJ (1995) Expression of mutant p53 protein and CD44 variant proteins in colorectal tumorigenesis. Gut 36:76–80
- Pauli BU, Knudson W (1988) Tumour invasion: a consequence of destructive and compositional matrix alterations. Hum Pathol 19:628–640
- Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI (1992) Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89:12160– 12164
- 30. Sinicrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ, Levin B (1995) Bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res 55:237–241

- 31. Smith CW, Patton JG, Nadal Ginard B (1989) Alternative splicing in the control of gene expression. Annu Rev Genet 23:527–577
- 32. Stamenkovic I, Amiot M, Pesando JM, Seed B (1989) A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56:1057-1062
- Tanabe KK, Ellis LM, Saya H (1993) Expression of CD44 R1 adhesion molecule in colorectal carcinomas and metastases. Lancet 341:725–726
- Thomas L, Byers HR, Vink J, Stamenkovic I (1992) CD44H regulates tuner cell migration on hyaluronate-coated substrate. J Cell Biol 118:971–977
- 35. Thorgeirsson UP, Turpenniemi-Hujanen T, Liotta LA (1985) Cancer cells, components of basement membranes, and proteolytic enzymes. Int Rev Exp Pathol 27:203–234
- Watson AJM, Merritt AJ, Jones LS, Askew JN, Anderson E, Becciolini A, Balzi M, Potten CS, Hickman JA (1996) Evidence for reciprocity of bcl-2 and p53 expression in human colorectal adenomas and carcinomas. Br J Cancer 73:889–895
- 37. Webb DSA, Shimizu Y, van Seventer GA, Shaw S, Gerrard TL (1990) LFA-3, CD44, and CD45: physiologic triggers of human monocyte TNF and IL-1 release. Science 249:1295–1297
- 38. Wielange VJM, Heider K-H, Offerhaus GJA (1993) Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 53:4754–4756